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Analytical description of a plasma diffraction grating induced by two crossed laser beams

Luis Plaja and Luis Roso
Departamento de Fı´sica Aplicada, Universidad de Salamanca, E-37008 Salamanca, Spain

~Received 30 May 1997!

The possibility of inducing a gratinglike electronic distribution at the surface of a plasma irradiated by two
crossed laser beams is analyzed fors andp beam polarizations. A simple relativistic model allows us to predict
the fringe location, and to give an analytical expression for the time-averaged charge density. The stability of
the grating structure depending on the beam polarization is also discussed. Finally, we test our conclusions in
the light of the numerical integration of the Lorentz and Poisson equations by means of a one-dimensional
particle-in-cell code.@S1063-651X~97!02412-4#

PACS number~s!: 52.40.Nk, 52.65.Rr, 52.60.1h
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I. INTRODUCTION

In the past decade, the availability of very intense sour
of coherent electromagnetic radiation gave rise to a new fi
of study in optics: the interaction of matter with light we
beyond the perturbative limit. Surprising new aspects ros
the field of atom-laser interactions, such as above-thres
ionization or the possibility of generating ultrahigh freque
cies through harmonic generation@1#.

The study of such nonperturbative phenomena beyond
single-atom approximation is a more recent concern, sinc
involves a more complicated theoretical treatment. A typi
scenario for these multiparticle approaches is the interac
of intense laser beams with solids. In fact, we witnes
increasing activity in this field in the past few years. A
though some work carried on in the description of nonre
nant interaction with the bulk of semiconductor materials@2#,
the increase of the intensity of the laser sources lead
situations in which complete ionization at the material s
face is achieved after a few cycles. Surface plasma dynam
becomes, therefore, a major source of nonlinearities, e
cially when the density exceeds the critical value@3#. For this
case, experiments@4,5# and theory@6,7# show the presence o
high-order harmonics in the reflected light. Particle-in-c
~PIC! calculations@8# are widely used in theoretical descrip
tions of such phenomena, although simpler moving mir
models@6,9,10# give a reasonable description. On the oth
hand, properties of laser-induced gratings were intensiv
studied in the 1980s@11#. Bragg diffraction and forward-
stimulated Brillouin scattering on a configuration similar
the one presented here have been also studied@12#.

One possible application of field-induced plasma diffra
tion gratings is in the interaction of high-intensity fields wi
solid surfaces. The intense fields generated by chirped p
amplification techniques were prevented from reaching
target surface by the plasma already generated in
prepulse. In the case of an induced diffraction grating, wh
the plasma density is close to the critical density, underde
grating fringes are alternated spatially with overdense on
If the grating structure is induced at the prepulse stage,
underdense regions will allow for deeper field penetrat
when the main pulse arrives.

In this paper we test the possibility of generating plas
surface-grating structures under high-intensity radiation.
561063-651X/97/56~6!/7142~5!/$10.00
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will show that they are stable in thes-polarization laser con-
figuration, while unstable in thep-polarization case. PIC
simulations will be presented in support. Finally, we deri
analytical expressions that approximate the averaged e
tron density for thes-polarization case, and enclose inform
tion of the fringe parameters~maximum electron density an
fringe width!, valid widely except in the far ultrarelativistic
regime. According to the above paragraph, we will restr
ourselves to the case in which the plasma density is the c
cal density. Our results, however, are also valid for the n
resonant case, since they do not depend on the abs
plasma density as long as enough free charge exists to b
the grating fringes.

II. FRINGE FORMATION

Let us consider the situation depicted in Fig. 1, where t
s-polarized laser beams,I and II , are aimed at a preforme
plasma at incidence angles ofa and2a. The incident beams
are represented by harmonic plane waves:

EW I~rW,t !5E0cos~kW I•rW2vt1f I !eW z ,

~1!

EW II ~rW,t !5E0cos~kW II •rW2vt1f II !eW z ,

FIG. 1. Scheme of the interaction geometry in thes-polarization
case. The plasma is approximated by a 1D slab along thex direc-
tion.
7142 © 1997 The American Physical Society
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56 7143ANALYTICAL DESCRIPTION OF A PLASMA . . .
whereE0 is the field amplitude, the same in both beams, a
f I andf II are phase factors. The electric field at the plas
surface (y50) is described by

EW ~x,t !5EW I~x,t !1EW II ~x,t !52E0cos~vt !cos~kx sina!eW z ,
~2!

where we have moved the coordinate origin so that the ph
factors are zero. The magnetic fields associated with the
light beams can be obtained from the electric-field functio
by the cross productsBW I5sW I3EW I and BW II 5sW II 3EW II , where
sW I andsW II are the unit vectors along the directions ofkW I and
kW II , respectively. The total magnetic field at the plasma s
face is given by

Bx~x,t !522E0cosa cos~vt !cos~kx sina!,
~3!

By~x,t !52E0sina sin~vt !sin~kx sina!.

A. Ponderomotive force

For now on we will consider a heavy ion plasma an
therefore, concentrate on the electron dynamics. The ele
magnetic force on the electrons is described by the Lore
equation

FW 5qS EW 1
pW

gm0c
3BW D , ~4!

wherep is the particle’s momentum,m0 the rest mass, and

g5S 11
p2

m0
2c2D 1/2

. ~5!

A first-order approximation for the electron momentum
position x may be calculated neglecting the magnetic-fie
contribution,

pz~x,t !.qE
0

t

Ez~x,t8!dt85
2qE0

v
sinvt cos~kx sina!,

~6!

and px(x,t).py(x,t).0. If we insert Eq.~6! into Eq. ~4!,
we have a second-order approximation for the electrom
netic force, valid provided we are not in the ultrarelativis
regime (v.c).

The electron dynamics described by Eqs.~6! and~4! leads
to a complex electron motion. The electron will quiv
mostly in thez direction, with a small drift along thex axis
due to the ponderomotive force. If we compute the cyc
averaged force, the quiver term averages to zero, and
motion is governed by the ponderomotive term

^FW &5 K qpz

gm0c
BxL eW y2 K qpz

gm0c
ByL eW x . ~7!

Regarding Eqs.~3! and~6!, they component of the pondero
motive force averages to zero; therefore,

^FW &5
2q2

m0cv
E0

2sina sin~2kx sina!K sin2vt

g~x,t !L eW x . ~8!
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A picture of the phenomena enclosed in Eq.~8! can be
drawn in the nonrelativistic limit, i.e.,g.1. The simple spa-
tial dependence of the ponderomotive force shows that
electrons will be drifted to the equilibrium points at

xm5
2m11

4 sina
l, ~9!

where stability conditions exist. This negative charge ac
mulation forms fringes along they direction, giving rise to a
diffraction grating structure at the plasma surface. Stability
ensured not only by the sign of the second spatial deriva
of the ponderomotive force, but also from the fact that t
quiver electron oscillation will be mainly in thez direction,
due to the pre-eminence of the electric term in the Lore
force, providedv,c.

B. P polarization

A calculation of the same fashion as above may be car
out for the case in which the light beams arep polarized. In
this case we have the following expressions by the elec
magnetic field components

Bz52E0cosvt cos~kx sina!,

Ex52E0cosa cosvt cos~kx sina!, ~10!

Ey522E0sina sinvt sin~kx sina!.

Ponderomotive force may be calculated in the same w
as before, giving as a result the same situation as for
s-polarization case. Electrons would, therefore, tend to ac
mulate at the samexm coordinates, where the ponderomotiv
potential has a stable minimum. This, however, will not
the case, since thex component of the electric field wil
induce a quiver perturbation along this axis which will b
larger than ponderomotive force, provided we are not in
ultrarelativistic regime.

III. FRINGE DESCRIPTION

It is possible to obtain an analytical approximation for t
averaged electron density shown in Figs. 3 and 4. To do t
we first have to compute the time average term of the p
deromotive force given in Eq.~8!. Using Eqs.~5! and~6!, the
cycle time average can be integrated to give

K sin2vt

g~ t !
L 5K sin2vt

A11K~x!sin2vt
L 5 1

2 F@ 1
2 , 3

2 ;2;2K~x!#,

~11!

where K(x)5@(2qE0 /vm0c)cos(kxsina)#2, and
F(a,b;c;z)52F1(a,b;c;z) is the hypergeometric function
The ponderomotive force is, therefore,

^FW &5
q2sina

m0cv
E0

2sin~2kxsina!F@ 1
2 , 3

2 ;2;2K~x!#eW x .

~12!

Let us now study a neighbor region of the plasma surf
around the stability pointxm of width 2x. Let Q(x) be the
time-averaged amount of charge enclosed in such reg
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FIG. 2. Time evolution of the electron density as calculated from the PIC code, fors polarization~a! and p polarization~b!. The
interaction time is plotted along the horizontal axis and a space region of twice the wavelength of the projected wave numberx
coordinate is plotted along the vertical axis. The beam intensity is 1018 W/cm2, wavelength 0.8mm, and the angle of incidencea5p/3 rad.
The plasma density is initially equal to the critical densitync51.7631021 cm23. To enhance fringe visibility, the electron density abo
critical is plotted on a scale of grey tones, while densities below critical are plotted in white. The formation of fringes in thes-polarization
set up becomes apparent before the four-cycle turn-on is completed. No grating structure is present in thep-polarization case.
om
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The electrostatic field at the edge of the regionxm1x can be
calculated through Gauss’ theorem to beEst54pQ. For a
stable situation to occur, the electrostatic force must be c
pensated for by the ponderomotive, thereforeqEst(xm1x)
1^F&(xm1x)50. Therefore the enclosed charge will be

Q~x!5
q sina

4pm0cv
E0

2sin~kxsina!F@ 1
2 , 3

2 ;2;2K~x!#.

~13!

The electron charge density may be found as the spatia
rivative of the enclosed chargeQ(x) plus the unperturbed
charge density,r0. The final expression reads
-

e-

r~x!5
1

2p

q

m0c2 E0
2sin2a cos~2kxsina!F@ 1

2 , 3
2 ;2;2K~x!#

1
3

8p

q

m0c2S qE0

m0cv D 2

E0
2sin2a

3sin2~2kx sina!F@ 3
2 , 5

2 ;3;2K~x!#1r0 ~14!

IV. PIC SIMULATIONS

To test the preceding ideas, we performed particle-in-c
calculations~1D3V PIC! @8#, one dimensional~1D! in real
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56 7145ANALYTICAL DESCRIPTION OF A PLASMA . . .
space and three dimensional in velocity space, for differ
incident angles, field intensities, and polarizations. Elect
charges are represented by quasiparticles in a o
dimensional space along thex coordinate, and in three
dimensional velocity space. In thes-polarization regime, the
electron density will be approximately invariant to a trans

FIG. 3. Time-averaged electron density as a function of
spatial coordinate. The solid line shows the result of the PIC sim
lations while circles show the analytical prediction. All paramet
are the same as in Fig. 2, except for the field intensity:~a! 2.5
31017, ~b! 531017, ~c! 1018, ~d! 231018 and ~e! 431018 W/cm2.
nt
n
e-

-

tion in thez coordinate ifv,c. Also, the quiver along they
axis will be small, since it will be driven only by magneti
force terms. In addition, for particles detached from the s
face, the drift motion along they coordinate will be reduced
if not suppressed, by the restoring force coming from
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FIG. 4. Time-averaged electron density as a function of
spatial coordinate. The solid line shows the result of the PIC sim
lations while circles show the analytical prediction. All paramete
are the same as in Fig. 2, except for the angle of incidence:~a!
85.7°, ~b! 60°,~c! 45°,~d! 30°, and~e! 4.5°.
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Coulomb interaction between the detached charges and
depleted surface. The 1D approach is, therefore, justified
thep-polarization case, thex andy terms of the electric field
will promote strong quiver in they direction. The plasma
restoring force may not be strong enough to avoid surf
ionization. In this case, the 1D approximation is, certain
less convincing. This regime, however, was shown to be
stable in Sec. III, and, therefore, of less interest to our p
poses.

Our PIC code solves the Poisson equation in the recip
cal space, and the Lorentz equation for each particle. S
our plasma slab is assumed to have thickness 0, the
acting on the charges is well approximated by the incid
field, i.e., neglecting the effect of propagation through
plasma medium. This, together with the fact that we are
interested in the study of the reflected and transmitted fiel
this paper, makes unnecessary the integration of the o
three Maxwell equations.

The electromagnetic fields are described by plane-w
expressions, with time-dependent envelope consisting of
turn-on cycles followed by 12 of constant amplitudeE0. The
turn-on term sin2(pt/Ton) induces our system adiabatical
into a quasistationary regime.

Figure 2~a! shows the negative charge density along
region of width 2p/kx in the x direction, as a function of
time. The s-polarized laser pulses have a turn-on of fo
cycles followed by 12 cycles of constant amplitude, and
aimed at incident angles (a) of p/3 and2p/3 respectively.
The plasma is assumed to be preformed before the p
interaction, and has a density equal to the critical (1
31021 cm23). The electric-field amplitude is 5.28 a.u.~in-
tensity of 1018 W/cm2), and the frequency is 0.057 a.u. (l
50.8 mm!. Fringes are formed after a few cycles, and ret
their relevant characteristic over the whole calculation. F
ure 2~b! shows the same calculation for ap-polarization ar-
rangement. In agreement with the discussion above, stab
conditions are not achieved, and no fringe structure
present.

A more compact visualization of these results is shown
Fig. 3, where the negative charge density, averaged ove
total calculation time, is plotted for different field amplitude
~solid line! compared to the result of the analytical expre
sm
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sion, Eq.@14# ~circles!. The analytical expression for the av
erage charge density shows a good agreement with the
simulation results for intensities below 231018 W/cm2. As
the electric-field amplitude increases, the fringes beco
more pronounced and their width shrinks@Figs. 3~a!–3~d!#.
For very intense fields, however, the amount of charge sto
in the fringes diminishes@Fig. 3~e!#. This can be explained
by the increase of the quiver oscillation amplitude induc
by the magnetic terms, when we approach the ultrarelati
tic regime. For this regime, the analytical expression over
timates the numerical results.

In Fig. 4 we plot the averaged charge density as the an
of incidence diminishes. The maximum electron density
creases as the angle decreases and we approach the n
incidence. The fringe width increases approximately at a r
1/sina.

V. CONCLUSIONS

We have discussed the possibility of inducing a grat
structure in the surface of a plasma, through the interac
with two high-intensity crossed laser beams. A simple we
relativistic model can be drawn for the time-average dyna
ics that shows a stable situation when the beams ares polar-
ized. Also with this model we can give an approximate an
lytical expression for the time-averaged charge dens
showing the fringe modulations. The results from our mo
are compared with the direct integration of the Lorentz a
Poisson equations by means of a one-dimensional part
in-cell code. This shows that the derived expression for
charge density is a reasonable description as long as w
not enter into the ultrarelativistic regime.
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